skip to main content


Search for: All records

Creators/Authors contains: "Fraser, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Following decades of insights from structure–function studies, there is now a need to progress from a static to dynamic view of enzymes. Comparison of prior cryo X-ray structures suggested that deleterious effects from ketosteroid isomerase (KSI) mutants arise from misalignment of the oxyanion hole catalytic residue, Y16. However, multi-conformer models from room temperature X-ray diffraction revealed an ensemble of Y16 conformers indistinguishable from WT for Y32F/Y57F KSI and a distinct, non-native ensemble for Y16 in Y57F KSI. Functional analyses suggested rate effects arise from weakened hydrogen bonding, due to disruption of the Y16/Y57/Y32 hydrogen bond network, and repositioning of the general base. In general, catalytic changes can be deconvoluted into effects on the probability of occupying a state (P-effects) and the reactivity of each state (k-effects). Our results underscore the need for ensemble–function analysis to decipher enzyme function and ultimately manipulate their extraordinary capabilities. 
    more » « less
  2. null (Ed.)
    This research examines the extent to which four anticipatory emotional reactions (hope, anxiety, helplessness, and boredom) that arise when contemplating participating in public-sphere climate action predict intentions to engage in such action. In a large, geographically diverse sample of American adults visiting informal science learning centers (e.g., zoos, aquariums; N = 4964), stronger feelings of hope robustly predicted greater intentions to act (η2p = .22, a large effect); whereas stronger feelings of boredom robustly predicted decreased intention to act (η2p = .09, a medium effect). Both of these feelings had significantly more predictive power than political orientation (η2p = .04, a small-to-medium effect). The extent to which respondents felt anxious or helpless was not strongly correlated with their intentions to take action (η2ps ≈ 0.01, a small effect). These findings highlight the underexplored connection between how people feel when they contemplate taking climate action and their intentions to engage in such action. 
    more » « less
  3. Abstract

    Grassland ecosystems globally are being negatively impacted by changes in climate, disturbance regimes, nutrient flux, and consumer guilds. Changes in the trophic ecology of consumers can substantially influence local resources, contributing to shifting diversity, community turnover, and other processes of ecosystem change. Small mammals are diverse and abundant within grasslands and yet the impact of changing ecosystems on small mammals and the role of these mammals as consumers are still both under‐studied. We assessed small mammal resource use within grassland and woodland vegetation types that have resulted from landscape‐scale experimental disturbance through fire treatments within the tallgrass prairie ecoregion of the North American Great Plains. We predicted that resource use would vary significantly among grassland vs. woodland communities, in turn reducing the role of small mammals in contributing to future maintenance of native prairies. We sampled five dominant species of rodents across three years and multiple habitats. Using stable isotope analysis, we investigated isotopic niche area and overlap to infer variation in diet, both within and among species. Resource use shifted in bivariate isotopic space seasonally but not across years when combining all species and habitats. Inferred spring diet (based on fur samples) was highly diverse and overlapping. Summer isotopic values (based on liver tissue) in woody habitat treatments were narrower and overlapped less than within grassland habitats. Consumers generally shifted from C4herbivory to C3herbivory, or greater omnivory, when analyzing grassland, shrubland, and woodland habitats respectively. Within the tallgrass prairie ecosystem, small mammal populations in herbaceous‐dominated habitats use a broader variety of resources than small mammals in proximate woody‐dominated habitats. As native grasslands experience woody encroachment, small mammal assemblages experience turnover of dominant species and associated changes in diet. Ecosystem changes such as cessation of frequent fire resulting in more woody habitats may include reduced roles by native small mammals as consumers/dispersers/propagators of native grassland plants.

     
    more » « less